
1

The Anatomy of Security Disasters
Marcus J. Ranum

Chief Security Officer, Tenable Network Security, Inc.

Abstract

Computer security disasters started happening shortly after computers became important for
purposes above and beyond playing “pong.” Unfortunately, “pong” was introduced in 1972, and – if
anything – computer security continues to get worse, rather than better. Clearly, one factor contributing to
the decline of computer security is simply demographics: the target-rich environment just gets richer and
richer. But, if we were responding effectively to security problems, we’d still expect to see signs of
improvement in some aspects of the landscape; we do not. The reason is simple: not only do we fail to learn
from our mistakes, high-tech management practices encourage fatal risk-taking. And security gets the
blame.

Introduction: Truth

Since I started in security, 20 years ago,
“they aren’t taking security seriously” has been
the constant complaint of the security expert.
Even in organizations where security is taken
seriously, it has been at the expense of living in a
constant relationship of opposing management or
other business units. Some of us enjoy the strife;
most don’t. In fact, most of us enjoy being
employed more than we enjoy being right.

So, what’s going on? We’ve finally
managed to get security on the road-map for
many major organizations, thanks to initiatives
like PCI and some of the government IT audit
standards. But is that true? Was it PCI that got
security its current place at the table, or was it
Heartland Data, ChoicePoint, TJX, and the
Social Security Administration? This is a
serious, and important, question because the
answer tells us a lot about whether or not the
effort is ultimately going to be successful. If we
are fixing things only in response to failure, we
can look forward to an unending litany of
failures, whereas if we are improving things in
advance of problems, we are building an
infrastructure that is designed to last beyond our
immediate needs.

Our challenge, as security practitioners,
has always been to balance risk – the tradeoff
between the danger of doing something and the

opportunity it presents. Since we’re not working
in a field where the probabilities are simple, like
they are on a roulette wheel, we’ve had to resort
to making guesses, and trying to answer
unanswerable questions. I don’t know a single
senior security practitioner who has not, at some
point or other, had to defend an estimated
likelihood of a bad thing happening against an
estimated business benefit. In those cases, the
result has less to do with security and more to do
with whose meeting-organizational skills are
superior, or who’s better at explaining their
viewpoint. I’ve seen major security-critical
business decisions get made based on whose golf
buddy runs what business unit – I’m very
skeptical of the notion that “Risk Management”
has any value beyond the butt-covering
obviousness of having made an attempt.

The Disconnect

The inspiration for this paper came
from a discussion I had with Alan Paller, the
founder of SANS and the CIO Forum. He was
quoted in an article as saying that CIOs were
regularly lied to regarding security by their
technical staff. Bear in mind that this is the
viewpoint as expressed from the position of the
CIO: corporate executives felt that they had done
their job when they told technical staff to "make
it secure." Technical staff had cheated by doing
naughty things like leaving unauthorized
connections between critical networks, leaving

2

systems unpatched and so forth. He concluded
by offering the following observation:

"It's a problem for security
people because their career depends on
their ability to enable the business
securely. We have had six years of
'regulation-based job security' for the
whiners. That era is coming to an end."

My intent here is not to pick on Alan,
specifically - it's a viewpoint that I've heard over
and over again from IT executives as well as
security practitioners. The short form is "there is
a train coming and you'll either clear the track or
get cleared off the track." In either case, when
the train has gone through, the track will be clear
- that is the important end-result we need to
consider. What I find particularly interesting is
that Alan's viewpoint appears to be that security
has actually managed to regulate, contain or slow
the oncoming train-wreck whereas I think it
hasn't.

The difference between Alan’s
viewpoint (other than that security practitioners
are ‘whiners’) and mine is that he appears to
believe that anything worth doing, can be done
safely. Or, at least, with controlled risk. That’s
why security practitioners’ “career depends on
their ability to enable business securely” in
Alan’s world-view. In mine, there is a huge
disconnect between what management hears and
what they are told – a disconnect so severe that
senior management like Alan can deride security
practitioners as “whiners” while still expecting
them to enable business securely. Sticking with
the train tracks metaphor: our problem appears to
be that management thinks a clear track means
it’s clear as far as they can see whereas some
security practitioners are worried about whether
it’s clear all the way to the end. More
importantly, management frequently makes
decisions on how the track we’re on right now
looks, without taking it into account when they
switch rails some time in the future. If you look
at the short history of computers and computer
security, you’ll see that time after time, short-
term thinking has resulted in long-term pain.

It Hasn't Happened Yet

Computer security hasn’t been tagged
with an epic failure, yet. So far, computer
security has “merely” been blamed for things
like billions of dollars of losses. In its simplest

form, the problem with computer security is that
(like most risky propositions) it's easy to simply
not worry about it as long as "nothing has gone
wrong, yet." That is the anatomy of simple
disasters. But after a few years or decades of
things going wrong, the problem eventually
filters into popular awareness and people are
sufficiently concerned to ask about it. In my
opinion, this stage of the Internet security
disaster was passed in the late 1990s - everyone
knew you needed some basic protections
(firewalls, system hardening, etc) but the
problem was sufficiently close to the cutting
edge of experience that standard practices had
not yet evolved.

It seems as if computer security has had
some massive failures (TJX, Choicepoint, the US
DOD NIPRnet) - and they are, indeed,
significant, but we're now at the point where
people are starting to realize critical
infrastructure attacks are practical. Quietly, while
most security practitioners were worrying about
how to disable ActiveX in their browsers,
massive numbers of control and process systems
were hooked up to networks that, simply put,
they shouldn't be. I describe that as having
happened in the past tense because it's important
to emphasize that the computer security disaster
has already happened - we simply have not yet
reached the end of the sequence of events that
started being put into motion in the mid 1990s.
In other venues I've been fairly skeptical about
the likelihood of "cyberterror" attacks -
computer-based terrorist attacks on critical
infrastructure - but the potential is vast. If (or
when) something starts to go wrong in that area,
we will be seeing the end result of a disaster that
occurred in the mid-1990s.1

Time Line of Disaster

Let’s take a slightly abstract look at
how security disasters actually happen. This is
based on my personal, direct involvement with
dozens of minor disasters, at every position in

1 A purist like me would say the disaster

actually occurred in the mid/late 1980s, when
databases migrated from closed systems to wide area
networked systems. At the time, only a handful of
people pointed this out as a possible problem, since
Internet connectivity was not on the radar screen, yet,
but it set the stage for the massive data leakage
problems that organizations are struggling to deal
with, today.

3

the time-line. These days I mostly seem to get
involved on the forensic and archeological side -
trying to figure out what went wrong, and where.

The time line of a typical disaster is
straightforward. At the beginning of the disaster,
a bad idea is proposed. Often, someone
immediately tries to shoot it down, or point out
its flaws. In very rare corporate cultures, the idea
dies there and the whole disaster is averted. More
typically, the bad idea survives - as does the trail
of Emails pointing out the initial flaws. In
archeological terms, those Emails are fascinating
reading; in forensic terms they are "discoverable
information" or "evidence." They are usually
forgotten, and sit in some engineer's out-box
archive, just waiting to come back and haunt
someone.

Next comes the most interesting part of
the disaster. Suppose management is duly and
accurately apprised of the fact that the idea is
bad. If the idea is something management really
wants to do, there is sometimes a period of
negotiation, or re-tuning. The idea bounces back
and forth and has various tweaks applied to it,
but two important things remain:

1) It is still a bad idea.

2) It is going to happen anyway.

Anyone who has ever been involved in
this kind of disaster, from the technical side, will
doubtless recall the horrifying feeling you get
when you realize that you're trapped trying to
deal with a bad idea. I like to refer to it as a “bad
idea zombie.” No matter how many times you
shoot it, or hit it with a shovel, it just keeps
crawling forward: the longer it survives as a
zombie, the higher the likelihood that it will be
un-killable in the long-term. Its sponsors dig in
their heels and get emotionally invested: after all,
it may be a zombie, but it’s theirs.

Then comes the most crucial part of the
disaster: the point at which management's
expectations begin to form a reality gap.
Generally, this happens because management
believes it has set out some objectives, and does
not realize that those objectives are being
renegotiated because the basic objectives are
literally impossible or simply ridiculous.

Let's look at an imaginary example of
how the beginning of a security disaster might
play itself out. Our CIO attends a CIO
conference in which other CIOs are bragging
about how successfully they have outsourced

management of their credit card processing to an
Internet banking service in Nigeria. So the CIO
comes back, and announces that we are going to
do likewise and kicks off the disaster. One of the
CIO's direct reports asks a member of the
security team to research the topic and "get back
to me with some recommendations." The
security engineer thinks about it for a day or two
and writes his boss an Email explaining why it's
a terrible idea, namely: a) we're exposing our
most critical data and b) the Nigerian banking
service has a @yahoo.com mailing address.2
This feedback gets filtered back up the chain of
command and bounces back and forth in the
"Negotiation" process. During this process, the
bad idea has various hypothetical mitigating
fixes applied to it, making it more complicated
and less obviously bad. For example, we agree
we'll have "compensating controls" and a
"service level agreement" with the partner,3 etc.
Perhaps a completely different plan (plan B) will
be proposed, but by this time too much effort has
been expended in attempting to dress the zombie
up in a tuxedo, it's too late.

The executive suite's expectations have
not been adequately reset. Up in the corner
office, they see people working hard on making
the idea come to fruition, plans are being made
and considerations are being weighed. The trade-
offs that are being made, which place the
organization at risk, are being somewhat
improved with compensating controls, but
nobody has been able to break it to the corner
suite that we're still dealing with a fundamentally
bad idea. More importantly, still, the
compensating controls may serve to obscure the
fact that they amount to little more than butt-
covering. In the most dysfunctional
organizations, you get senior (or sometimes mid-
level) executives who 'shop a bad idea' until they
find someone who is willing to tell them it is

2 In management terms this is called "being

a naysayer." Or a “whiner.”
3 Outsourcing is rife with service level

agreements that are not worth the paper they are
printed on. After all, the outsourcer is in business to
say “sure – we can do that!” to anything that the
customer asks. The only way the outsourcing customer
can be sure the outsourcer is doing what they claim to
is to duplicate the effort, which is something that they
are obviously unwilling to attempt in the first place.
You don’t need to be an expert in game theory to
realize that an outsourcer is always more highly
rewarded the more extremely they lie.

4

good. One security disaster I was involved with
happened in exactly this manner: a senior
executive hit upon a bad idea and asked the
security team for their input. The security team
explained why it was a bad idea; in fact they
wrote a brilliantly clear, incisive report that
definitively framed the problem. So the
executive asked the web design team, who
declared it a great idea and “highly do-able” and
implemented a prototype. Months later, the
"whiners" in the security team were presented
with a fait accompli in the form of "we're ready
to go live with this, would you like to review the
security?" Once any significant effort has been
expended on the zombie bad idea, the chance of
it being killed drops to near zero.

I have seen this play itself out dozens of
times, in critical decisions made regarding IT
security during the course of my career. The
reality gap comes into play when the executive
decided to shop the idea around: he asked for this
thing to be done securely, and got a resounding
"no" from the security group, but a "yes" (it can
be done, but not securely) from the web group.
All he hears is the "yes" and when the whole
thing blows up a year later, his memory will be
that he asked if it could be done safely, but
someone lied to him. What really happened is
that the disaster was inevitable from the moment
when the bad idea took hold. I predict that the
security team’s report will, some day, be
uncovered and shall be known as “evidence.”

The Post Disaster

Archeology of a disaster is almost
always extremely depressing, because you learn
over and over again that disasters are not
unavoidable. If senior management believes that
they were lied to, they wind up getting disabused
of that theory when the Email memos start to

surface. I've been involved in a couple of
disasters in which senior managers say "why
didn't they tell me about this?!" and someone has
to suck up the courage to point out their Email
address was on the Cc: line of recipients: "They
did."

Simply put, such disasters are purely the
fault of poor management; managers who 'shop'
bad ideas, or who create organizational cultures
in which staff that point out problems are
"whiners" or "nay-sayers." Unfortunately, in
most businesses, senior level managers are
recruited for being "can do" types who get the
job done, which means that you're particularly in
danger of having to deal with a senior executive
that is comfortably living with a serious reality
gap.

Technical security experts that I've
worked with often feel that you can "butt cover"
by making sure that the managers who "own the
decision" accept responsibility for it, and that if
something goes wrong, it'll be the managers who
are accepting the fall. The unfortunate truth is
this almost never happens. What usually happens
is that senior management simply claims they
were not fully apprised of the decision and that
they never would have approved it if they had
been - in short "they were lied to" as Alan Paller
would say. When a security disaster happens, the
person it is most likely to fall upon is the mid-
level security manager - ironically, the person
who is most likely to have been the recipient of
the Emails from the technical staff saying "this is
a bad idea." That mid-level manager is then the
person in the ideal position to vindicate their
actions by turning whistle-blower or dumping
the Emails in which senior management was
informed of the reality of the bad idea they were
approving.

5

1) Inception of bad idea
2) Identification as bad idea
3) Negotiation
4) Search for Plan B
5) Failure to re-adjust expectations
6) Initial failure conditions are noticed
7) Denial or kludging
8) Failure
9) Hunt for the guilty
10) Finger Pointing
11) Memo Archaeology
12) Slaughter of the Innocents
13) Failure to learn
14) GOTO 1

2.2) Memos
generated!

6.2) Memos
generated!

Opportunity for
cover-up or
conspiracy

Figure 1: Timeline of a Security Disaster

Memos
from 2.2
and 6.2
resurface!

What is fascinating and sad to me is that
when the dust clears and the bodies are buried,
very little has changed that would prevent
another disaster from happening. The reason for
this is that all the attention is focused on the tail
end of the disaster, but the real disaster happened
at the moment when the bad idea was allowed to
become a zombie. I did some work a number of
years ago with a large company that had a very
skillful security manager who was a master at
killing bad ideas before they took on a life of
their own. In that case, it was his willingness to
tell senior executives "this is going to blow up in
your face if we proceed." The only way to
prevent security disasters is to have a security
team that is fearless about feeding back
information up to the top of the chain of
command, and to have senior executives who
make decisions based on reality rather than a
projection of their fantasies.

Risk Management: Disaster Waiting to
Happen

It used to be difficult for a security
practitioner to argue against the idea of risk
management. It sounds so pure and
mathematical. Unfortunately for us all, the Wall
St crash of Dec 2008 serves as a complete

debunking of the value of risk management.4 All
the big firms that lost billions or went out of
business had risk management departments and
practices and felt they were taking acceptable
risks. Perhaps the risk management departments
were wrong, or perhaps management was living
with a reality gap. Either way, there is a
cautionary tale that should give everyone cause
to reflect!

If you accept the argument I am making
so far, perhaps I can convince you that "risk
management" is a fiction that plays into the
disaster-cycle. The premise of risk management
is that you will quantify the risk/reward of a
decision, then assess the likely failure modes and
attempt to reduce them appropriately in detail.
Inherently, the risk management approach is too
late in the cycle: we've already chosen to execute
a bad idea, and now we're arguing about what we
can do to reduce the impact when it goes wrong -
not if. The best example I can think of that
exemplifies risk management is skydiving: by
carrying two parachutes you’re reducing your
critical risk of parachute failure – but your

4 Many Wall St players simply listed toxic

high-risk investments as “bonds” in their corporate
risk-management systems – to bypass the carefully
computed risk indexes upon which the banks’ market
exposure was calculated. This is a classic “Garbage In
Garbage Out” (GIGO).

6

chances of disaster go to zero if you choose a
safer hobby like, perhaps, knitting. The
difference between a risk-taking skydiver and a
risk-taking corporate executive is that the
skydiver’s risk is direct and personal whereas the
executive’s typical worst-case scenario is that
they have to use their golden parachute and then
find a new company to lead off a different cliff.

If you think back to my example of
outsourcing to the Nigerian bank scammer, I
think you can see that there's no amount of
compensating controls that can usefully be
employed if you're dealing with someone who is
willing to lie. I've actually seen this happen
before, in an outsourcing project in which it
became clear that the outsourcers were going to:
a) say whatever took to win the project and b) do
whatever they were going to do, anyhow, after
they did. The premise of risk management, that
the risks of certain activities can be understood
and managed, falls apart when you're dealing
with a reality gap.

On that particular topic, I cannot better
the words of Richard Feynman, from his famous
minority report on the Challenger Space Shuttle
disaster:

It appears that there are
enormous differences of opinion
as to the probability of a
failure with loss of vehicle and
of human life. The estimates
range from roughly 1 in 100 to 1
in 100,000. The higher figures
come from the working engineers,
and the very low figures from
management. What are the causes
and consequences of this lack of
agreement? Since 1 part in
100,000 would imply that one
could put a Shuttle up each day
for 300 years expecting to lose
only one, we could properly ask
"What is the cause of
management's fantastic faith in
the machinery?"

Ultimately, risk management is a
numbers game; you multiply a wild-ass guess by
a fudge factor. Worse, the potential cost of
failure is estimated in as a factor, too. So you're
trying to balance an unjustified estimate of cost
of failure against a wild-ass guess multiplied by
a fudge factor. Generally, what is really going on
is that risk management is used as a sort of
statistical shell-game to manipulate the perceived

value of security when dealing with a clueless
senior manager. Bluntly: it's lying with statistics.
Those who engage in it do so because they think
their managers are idiots. The fact that they are
often right is sad, but should not surprise anyone.

Feynman's description5 of the
foolishness of trying to estimate the "effective
lifetime" of a space shuttle main engine should
be required reading for anyone who claims to
believe risk management is practical. To
summarize it: you can only play Las Vegas odds-
maker when you're working on small numbers of
variables and extremely well-understood
conditions.

Improving Communication and
Education

Another model for preventing security
disasters is to attempt to improve intra-
organizational focus and communication about
security. When I've seen organizations promote
security awareness efforts, they usually don't
work. If they do it's almost always because
senior management has been careful to create an
environment in which bad ideas are less likely to
take hold, rather than one in which there is
improved communication about bad ideas. I had
one client years ago, that instantiated a process
of "security sign off" on design - essentially
formalizing a delay-loop caused by paperwork
between Stage #6 and Stage #7. Essentially, only
the certified zombies of bad ideas could get
through the process.

The place to improve communication is
at the earliest stages of the disaster-in-progress:
in other words, you can simplify this to the
simple observation: "You need executive
management that does not make bad decisions,
takes security into account and listens."
Formulated that way, it's pretty much a statement
of the obvious - because it's an obvious truth. In
the organizations where I have seen effective
communication about security it begins and ends
with senior management asking direct questions
about security considerations and not accepting
hand-waving for an answer. In an environment in
which senior management places security
concerns on the agenda for technical decisions,
you'll find that security education is not required;

5 http://www.ranum.com/editorials/must-

read

7

it simply happens because the appropriate people
come to realize that it's part of their job.

Legislating Security Failures

The problem with legislative
approaches to encouraging security is that the
legislation always happens too late. Take, for
example, the rush of legislation regarding
personal information disclosure. We are dealing
with a rush to regulate all sorts of aspects of data
leakage, but it would make vastly more sense to
regulate who has access to what data. Of course,
it is way too late for most businesses to even
form a vague idea of who has access to what;
consequently the press is filled with accounts
that read: "laptop full of customer data left in
airport departure lounge." The focus is on "what
do we do about that data leak?" not "why on
earth is customer data wandering around airports
on laptops?"

For people like me, who enjoy reading
between the lines, the reports of data leakage
ought to be particularly terrifying because of the
unsaid revelations that they make: namely,
random employees and contractors at most
organizations have complete, unfettered access
to virtually everything. Imagine taking an
organization that utterly lacks internal controls
on data access, and attempting to retrofit them!
Most IT managers would throw up their hands in
despair - can you imagine what it would cost to
figure it out, now?

In case I am not being sufficiently clear,
I think the IT world crossed a Rubicon in the late
1980s, in which control over information was
effectively abdicated. That has huge implications
for the scope and lethality of security disasters
because it generally means that a single
penetration into an organization is effectively a
complete penetration of all the organization's
information assets. Those of us who enjoy living
in global military/economic superpowers should
be very unhappy at the thought that the situation
I'm describing applies to most US government
agencies and virtually every significant
commercial entity.

A few years ago, when a friend and I
were discussing this problem at a conference, he
said, "Yeah, but what should we do about it?"
The only answer I can honestly give is:

"The wrong decisions got
made 15 years ago and now it's
too late to go back and un-make
them."

Legislation leaves us simply with
formalizing damage control when the disasters
occur, with a few good ideas for damage
containment thrown in where possible. But the
assumption (as with risk management) is that
security disasters are going to be inevitable,
huge, and frequent.

A fad that is related to risk management
is the use of economic models to talk about
security. I'm not, I confess, up to date on the
latest literature in this area, but the gist of the
idea seems to be to take a risk management
approach and then try to rationalize what actions
make the most sense from a standpoint of cost-
effectiveness. I have already asserted my
assumption that risk management consists
largely of compounded wild-ass guesses, so an
economic model built to optimize wild-ass
guesses is not going to be worth any more than
the paper it's printed on. I’ve talked to fans of
economic models that who explained security to
me in terms of it being a "market failure" - a
market failure being what happens when a
market does not adequately self-regulate because
customers don't have anything rational on which
to base their decisions. Outside of Las Vegas,
there must be very few markets that are not
"failures."6 Security is, certainly, one. When
economists talk about a "market failure" I hear
the sound of hands waving; I do not think we can
expect any help or illumination from that quarter.

Another problem with economic models
is that the model often suffers from a bad case of
“Garbage In, Garbage Out” (GIGO) syndrome.
When constructing the model, you get to decide
what is in it, and what is not – unlike in reality.
That’s how you get “cost conscious” decisions
like using a manifestly insecure desktop
operating system for security-critical
applications and then layering $300 worth of

6 Security bears more resemblance to a

battlefield than a market. In most markets you don’t
assume an active opponent who, at times, innovates
strategies designed to defeat you.

8

anti-virus, system administration, and patch
management tools atop it in an attempt to make
it halfway decent. If the only cost you plug into
your model is the initial purchase cost of the
operating system, then it makes sense, but the
simple economic model can’t take into account
events that are outside of it such as having to re-
install 400 desktops because of a botnet
outbreak. Since hindsight is always 20/20 our
backward-looking economic models, which we
use to justify our future projections, always look
pretty good. I’m pretty sure that most of the
victims of skydiving accidents’ last thoughts are
“I wish I had stayed home today.” Remember:
every fatal skydiving accident is that diver’s first
fatal accident.

The Reality Gap

My suspicion is that the "reality gap"
between management's expectations and what
they actually have out there on their networks is
larger than they realize. I think it is vastly larger.

Here is the problem: if there is a 'reality
gap' between how secure our networks are
expected to be, and how secure they actually are,
how do we bring them back in line with
expectations? At this point, I expect most of you
to be scratching your heads, thinking, "that's
impossible. It was hard enough to get things as
locked down as they are, now, never mind going
back and re-assessing the status quo." If you look
at the implicit criticism in Paller's comment, the
"whiners’" careers are already at stake, and
business enablement holds the upper hand.
Those of us who have spent our lives as security
"whiners" and "nay-sayers" have cause to be
concerned because most of us see that business
enablement has always held the upper hand. If
Paller's right, he's saying that the gap between
security perception and reality is about to get
dramatically worse in the next decade.

In fact, there is no way that it can get
better. Because of the depth of the reality gap,
"throw it out and start over" is not a justifiable
option (after all, nothing terrible has happened
yet!) and there is now a huge installed base that
represents massive intellectual and financial
inertia. Perhaps a few of you have already had
the experience of trying to encourage a client to
think a little bit before embarking on a Web 2.0
rewrite of a crucial application. That particular
train has already left the station and is coming
toward us. Old timer security practitioners know
that the place to build in security is at design-

time, but we are faced with a vast mass of
moving code, all of which is past the critical
point at which it could really be improved.7
Since it's now too late to get into the cycle at
design time, the only option remaining to the
industry is "disaster and patch."

Space Shuttles

It used to be that the most complicated
thing ever built by humans was the space shuttle.
We could argue a lot about how to measure
complexity, but nowadays the popular wisdom is
that software has become vastly more
complicated than the space shuttle ever was.
Space shuttles are insanely expensive things that
are, unfortunately, vastly less reliable than they
were originally expected to be. Personally, I find
the idea of re-entering from orbit at a speed of
25,000 miles/hour to be literally incredible – but
so is the idea of an operating system comprising
of 40 million lines of C code hand-written by
humans. As Rob Kolstad used to say “It’s a
miracle that it works at all!” While Rob can sit at
a café comfortably sipping a hot chocolate while
marveling at his MacIntosh, I doubt very much
that those are words you’ll ever hear spoken out
loud by a space shuttle pilot. If there were as
many space shuttles being flown as commercial
jets, they would be raining out of the sky every
day.

When the Space Shuttle Challenger
blew up on take-off, NASA went into disaster
management mode. A truly epic failure had
occurred on prime time television, and everyone
was asking "what went wrong?!" The simple
answer to give would have been "space travel is
dangerous" but unfortunately NASA
management had distanced itself from that
reality; there was a gigantic reality gap between
the actual safety of space flight and the expected
safety of space flight. NASA chartered a blue-
ribbon panel of experts to stumble around and
write a set of conclusions that would basically
read "space travel is dangerous, but NASA's
doing a great job." Instead, something unique
happened: Nobel Laureate Richard Feynman got
invited to join the panel, and he wound up
conducting his own investigation and produced
his own report - a masterpiece that succinctly

7 There is a metric called the "Doomey

Microsecond" and it is defined as "the period of time
between which not enough is known about a problem
to make a decision, and everything is set in stone."

9

and brilliantly explained how an organization
like NASA could establish a reality gap
regarding safety explanations. It's one of the best
technical white papers ever written, I believe; I
highly recommend you read it. Feynman
describes an environment in which management
expects a certain level of performance from a
component, then accepts compromises that
reduce the performance level - without adjusting
their expectations. Furthermore, he goes on
describe how NASA rocket scientists attempted
to wave away significant component failures as
"acceptable flight risks" because they had not
resulted in a flight failure yet.

If the attitude of "this risk is acceptable
because it has not resulted in a failure yet"
sounds familiar to you, it should. That’s the
history of the computer security disaster in a
nutshell. The important lesson from looking at
Feynman's analysis of the shuttle is that we have
another field full of very smart people thinking
very hard and giving good advice - all of which
is contributing to a widening gap between
expectation and reality. I wonder if their
managers called them “whiners”?

Not to belabor the point too much,
when the Space Shuttle Columbia broke up on
re-entry, the failure analysis revealed exactly the
same type of expectation to reality gap had
evolved regarding the shuttle's tendency to lose
tiles, as in the Challenger's solid rocket booster
leaks. Basically, NASA managed to learn
nothing from the first failure, for exactly the
same reasons that the computer security industry
manages to learn nothing from its failures: fixing
the problem would entail re-visiting decisions
that were made decades ago and, besides, it
would be too expensive to re-visit them now.
There is a very real and useful analogy here,
though: periodically even NASA will look at a
design like the shuttle's and obliquely admit that
it was a botch. "It's a miracle that it works at all"
does not just apply to the Internet. Unlike
virtually everyone else, the pilots of the space
shuttles have a fairly realistic assessment of the
situation: "space travel is dangerous."

Putting an organization or a country's
information assets online is dangerous, too.
Putting them on a network is even more
dangerous, and exposing them to the Internet is
most dangerous of all. There is simply no other
conclusion that you can realistically reach.
Consequently, I argue that there are very many
places where it would make sense to retrench

capabilities off the Internet entirely and to reduce
the number of network-controllable SCADA
systems. Every day that goes by increases the
reality gap between our expectation of data
security and the degree to which it is at risk.

Breaking the Cycle

What can we do to break the cycle? The
most important thing is to make sure you are
direct and honest about expectations at all times.
Do not allow management or clients to believe
that they can do dumb things in safety, and do
not hide behind bogus probability guesses.
"Safety" is not the same thing as "relative
safety."

Pre-allocating blame is crucial to
keeping the reality gap as small as possible.
When management negotiates a control out of
the loop, do not simply allow them to assume
"it's OK" - go back and remind them that the
parameters of the design have changed. As Alan
Paller said, executives feel that they are being
lied to by technical staff who are taking
shortcuts8 - reality check them by circling back
with an update. E.g.: "By the way, since you
asked us to keep the management costs on that
system down, we have followed your directive
and are now using an Internet-based remote
control interface. Since the old system had zero
chance of compromise over the Internet, and the
new one has something more than zero chance,
we can realistically say that it is infinitely more
dangerous to proceed in this fashion." I believe
that is how a nay-sayer would put it.

During Feynman's analysis of the
Challenger disaster9 he describes a number of
the memos from rocket engineers attempting to
express concerns up the management tree. The
general tone of the memos is uncertain and rich
with weasel-words and "could be," "might," and
"should." To help bridge the reality gap, you
must keep your communications as clear and
unambiguous as possible.

8 If you believe them, I have a big iron tower

in Paris, France, for sale - cheap; contact me if you're
interested.

9 A new book, "Classic Feynman" includes a
short article by Feynman about the entire experience
of being on the panel and producing his report. It's a
fascinating study in its own right of how large
organizations respond to failures.

10

I.e.:
"Mister President, The US Government's
over-reliance on contractors in the area of
federal government-related information
technology represents a clear danger to the
future of our national security."

Hope

The failures I am describing are failures
of hope - they are the consequence of human
optimism. With regards to computer technology,
the hopefulness combines our love of shiny new
widgets and the scientific culture of information
technology: more really is better, even if it's
unnecessary and dangerous to the point of
stupidity.

Speaking of "dangerous to the point of
stupidity," the next disaster is already beginning,
and it's in the form of Web2.0. I don't think it
will be possible for it to be as bad as Web1.0 was
- we are nowhere near done reaping the
"benefits" of that one - but the Web2.0 model
encourages dis-integration of information assets
at the data level. Nobody will even have an idea
where their data is getting processed, because it's
all being sent "out there" for mysterious things to
be done to it. When a page is rendered, part of
the page may be rendered by a site (we think
we…) trust, while another part may be rendered
by a commercial provider who aggregates data
with our competitors. What does "trust model"
even mean in that kind of environment? How do
you separate reliable data from unreliable data,
when everything is loosely coupled behind
chains of uncontrolled servers? I'm already
seeing the tip of the iceberg - the other day I was
running a copy of Tenable's Passive
Vulnerability Scanner while I browsed to a
couple of MySpace pages. During the course of a
few minutes of browsing, the vulnerability
scanner identified easily exploitable holes in 5 of
the banner/ad server applets that were coupled
into the MySpace pages. Users have no notion of
which data items are served from a "trusted"
provider and which from a "trustworthy"
provider. On the Web1.0 systems we are already
dealing with transitive trust weaknesses that
scare me; Web2.0 promises vastly worse
problems. Cybercriminals are already making
effective use of the basic Web1.0's failings in
this regard; doesn't the rush to Web2.0 simply
signal a desire for heavier arterial bleeding?

Giving Up

When things get sufficiently bad,
eventually you simply give up. If you're NASA,
once you've spent your budget on space shuttles,
you can't go back and say "Oops. Give us
another hundred billion dollars and let us try
again." But, if your system is too complex and
inter-dependent, there's no way to reconstruct
everything that might have happened. At that
point, failure analysis becomes prohibitively
expensive, as well.

Think about that for a second: if it is
prohibitively expensive to figure out what went
wrong, then it's impossible to fix the problem.
You're left with no alternative but to slap duct
tape on it and keep going and hope that the duct
tape landed on the right spot. But, unless you
understand the problem, you're left with the fact
that you have a flawed design and your failure
rate (all things being equal) will be pretty
constant. Put another way: we can state that
space shuttles seem to have about a 1% failure
rate (with catastrophic loss) per flight - which
means that NASA will run out of shuttles in a
few years. Fixing the basic design is not an
option. If you look at complex Internet systems
or, say, a government's IT infrastructure, if the
failure rate remains constant but we depend on
them more and more, the cost of IT security
failures will inexorably go off the chart. We will
reap what we are sowing today, and it will be a
horrible, stinking crop of failure.

In 1997, at The Black Hat Briefings, I
suggested that we should scrap the Internet and
our installed base of Internet apps, and start over
(blaming the whole thing on Y2K). Everyone in
the room laughed. But I wasn't joking.

Obviously, from the content and the
tone of this presentation, I think it is already too
late. There is too much momentum to an
inherently dangerous process, and it will go
forward until there are severe-enough disasters
that something has to change. But, consider
when you look at an organization like NASA
that can lose not one, but two, multibillion-dollar
space shuttles and their pilots to the same kind of
reality gap, it will take something extremely
severe to wake up a national-level response.
What might that be? We already have US
Pentagon spokespeople alleging that "Chinese
hackers" have stolen "10+ terabytes" of
information from the DoD's unclassified

11

networks10 - such an information leak could
result in a superpower transitioning into a 3rd rate
power, but the failure would be too complex for
anyone to figure out.11

I used to get pleasure out of saying “I
told you so” but this is one case where I really
hope to forgo the opportunity.

10 The "unclassified" networks are the ones

where all the military's logistical systems, email,
payroll, and personnel data are stored. Do you think it
would be possible for an enemy to learn anything
useful from that? No way!

11 As of V2.1 of this paper, US Government
spokespeople have informed us that the plans for the
Joint Strike Fighter (F-35) a $300 billion weapons
system. Never mind the strategic implications of such
a leak, there are doubtless plenty of high-tech goodies
from that project that could find their way into the
design of commercially competitive aircraft.

